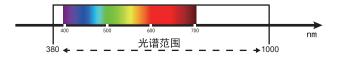
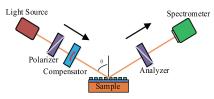


- - 高精度、高性价比光学椭偏测量解决方案
 - 多角度配置、微光斑集成设计,一键快速测量
 - 向导交互式人机界面,便捷的软件操作体验
 - 丰富的材料数据库和算法模型库,强大的数据分<u>析能力</u>

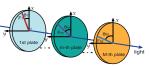


SE-VM 是一款高精度、高性价比、快速测量型光谱椭偏仪,其配置多角度调节、集成微光斑设计,可通过椭偏参数、透射/反射率等参数的测量,实现各种各向同性/各向异性薄膜膜厚以及光学常数快速测量表征分析。

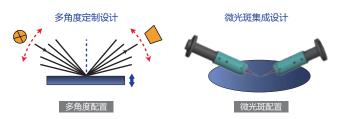
产品特点


■ 光谱范围覆盖广

采用高性能卤素灯光源,光谱覆盖可见光到近红外范围;


■ 单旋转补偿器调制技术

高精度旋转补偿器调制、PCRSA配置,实现Psi/Delta光谱数据高速采集;


■ 消色差补偿器设计

颐光专利补偿器技术,适应从可见光到近 红外宽光谱范围内高精度相位调制需求;

■ 多角度配置、微光斑集成设计

支持多角度定制化设计,集成微光斑测量能力,可实现各式基底材料或各 待测区域的角度择优测量;

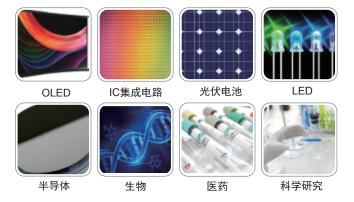
丰富的材料数据库和算法模型

数百种材料数据库、多种算法模型库,涵盖了目前绝大部分的光电材料;

asic	Dielectric	Semiconductor	Metal
Bspline.dat Cauchy.dat Codyl.or.dat Søllmeier.dat Codyl.orentz.dat Temp-Library.dat Forouhi-bloomer.dat Taucyl.orentz.dat Tanguy.dat Gaussion.dat Lorentz.dat	AlzOs.dat BaTiOs.dat CaFe, dat CuC.dat DLC.dat IPA dat ITO.dat KGI Palik.dat KGI Palik.dat LaFs.dat LiFBOs.dat MgO.dat	AlAs,dat AlGaAs2dat AlGaAs2dat AlSa,dat GaAs,dat GaAs,dat GaSb,dat HgTe,dat In24GaAs,dat In24GaAs,dat	Ag.dat Au.dat Au.dat Au.dat Cd.dat Co.dat Co.dat Co.dat Co.dat Lo.dat Lo

■ 强大软件应用分析能力

针对半导体、集成电路、新型平板显示、薄膜光伏等领域中材料的厚度、 光学常数、结构信息等数据通过建模拟合进行全面的快速分析;



技术参数

基本功能	一次性获取Psi/Delta、N/C/S、R/T等光谱		
光谱范围	380-1000nm		
测量时间	0.5-5s		
入射角范围	55°-75°(5°步进调节),90°(直通模式)		
光斑尺寸	2-3mm(大光斑), 200µm(微光斑)		
重复性精度	0.01nm (100nmSiO2硅片)		
支持样件尺寸	支持180mm样件		
分析软件	多达数百种的光学材料数据库,支持用户自定义		
	提供多层各向同性/异性光学薄膜建模仿真与分析功能		

产品应用

SE-VM 型光谱椭偏仪广泛应用于镀膜工艺控制、tooling校正等测量应用,实现光学薄膜、纳米结构的光学常数和几何特征尺寸快速的表征分析:

Tel: 027-87001728 E-mall: info@eoptics.com.cn

